Topological Structures on Intuitionistic Fuzzy Multisets

Shinoj T K, Sunil Jacob John

Abstract

In this paper, we introduced the concept of Intuitionistic Fuzzy Multiset Topology. Mapping functions are defined to connect Intuitionistic Fuzzy Multisets defined on different sets. Subspaces and Continuous functions are discussed to study the topological structures of Intuitionistic Fuzzy Multisets and their various properties are discussed.

Keywords-- Intuitionistic Fuzzy Multiset, Intuitionistic Fuzzy Multiset Topology, Continuous functions, Subspaces.

I. INTRODUCTION

THE theory of sets, one of the most powerful tools in modern mathematics is usually considered to have begun with Georg Cantor (1845-1918). Considering the uncertainty factor, Lotfi A. Zadeh [1] introduced Fuzzy sets in 1965, in which a membership function assigns to each element of the universe of discourse, a number from the unit interval $[0,1]$ to indicate the degree of belongingness to the set under consideration.

If repeated occurrences of any object are allowed in a set, then the mathematical structure is called as multiset [11,12]. As a generalization of multiset, Yager [2] introduced fuzzy multisets and suggested possible applications to relational databases. An element of a Fuzzy Multiset can occur more than once with possibly the same or different membership values.
In 1983, Atanassov [3,10] introduced the concept of Intuitionistic Fuzzy sets. An Intuitionistic Fuzzy set is characterized by two functions expressing the degree of membership and the degree of nonmembership of elements of the universe to the Intuitionistic Fuzzy set. Among the various notions of higher-order Fuzzy sets, Intuitionistic Fuzzy sets proposed by Atanassov provide a flexible framework to explain uncertainty and vagueness.

The concept of Intuitionistic Fuzzy Multiset is introduced in [4] by combining the all the above concepts. Intuitionistic Fuzzy Multiset has applications in medical diagnosis and robotics [13,14].

In [5] Shinoj T K, Anagha Baby and Sunil Jacob John

- Shinoj T K. E-mail: shinojthrissur@gmail.com. Department of Mathematics, National Institute of Technology, Calicut-673 601, Kerala, India.
- Sunil Jacob John: sunil@nitc.ac.in. Department of Mathematics, National Institute of Technology,Calicut-673 601, Kerala, India.
introduced algebraic structures on Intuitionistic Fuzzy Multiset.

General topology was the first field of pure mathematics where the concepts and ideas of fuzzy sets took strong roots. In 1968, Chang [9] introduced Fuzzy topological spaces. And as a continuation of this, in 1997, Dogan Coker [6] introduced the concept of Intuitionistic fuzzy topological spaces. In our work, we generalized this concept into Intuitionistic Fuzzy Multiset. First we discuss the basic operations and in the subsequent sections we introduce the concept of functions on Intuitionistic Fuzzy Multiset and followed by this the topological structures and its various properties are discussed.

II. PRELIMINARIES

2.1 Definition [1] Let X be a nonempty set. A Fuzzy set A drawn from X is defined as $A=\left\{\left\langle x: \mu_{\mathrm{A}}(x)\right\rangle: x \in X\right\}$. Where : $X \rightarrow[0,1]$ is the membership function of the Fuzzy Set A.
2.2. Definition [2] Let X be a nonempty set. A Fuzzy Multiset (FMS) A drawn from X is characterized by a function, 'count membership' of A denoted by CM_{A} such that CM_{A} : $X \rightarrow Q$ where Q is the set of all crisp multisets drawn from the unit interval $[0,1]$. Then for any $x \in X$, the value $C M_{A}$ (x) is a crisp multiset drawn from $[0,1]$. For each $x \in X$, the membership sequence is defined as the decreasingly ordered sequence of elements in $\mathrm{CM}_{\mathrm{A}}(\mathrm{x})$. It is denoted by $\left(\mu^{1}{ }_{\mathrm{A}}(\mathrm{x}), \mu^{2} \mathrm{~A}^{(x)}, \ldots, \mu_{\mathrm{P}}^{\mathrm{P}}(\mathrm{x})\right)$ where $\mu^{1} \mathrm{~A}(\mathrm{x}) \geq \mu^{2}{ }_{\mathrm{A}}(\mathrm{x}) \geq \ldots, \geq \mu_{\mathrm{P}}(\mathrm{x})$.

A complete account of the applications of Fuzzy Multisets in various fields can be seen in [9].
2.3 Definition [3] Let X be a nonempty set. An Intuitionistic Fuzzy Set (IFS) A is an object having the form $A=\{<x$: $\left.\mu_{\mathrm{A}}(\mathrm{x}), \mathrm{VA}_{\mathrm{A}}(\mathrm{x})>: \mathrm{x} \in \mathrm{X}\right\}$, where the functions $\mu_{\mathrm{A}}: \mathrm{X} \rightarrow[0,1]$ and $\mathrm{va}_{\mathrm{A}}: \mathrm{X} \rightarrow[0,1]$ define respectively the degree of membership
and the degree of non membership of the element $x \in X$ to the set A with $0 \leq \mu_{\mathrm{A}}(\mathrm{x})+\mathrm{va}_{\mathrm{A}}(\mathrm{x}) \leq 1$ for each $\mathrm{x} \in \mathrm{X}$.

2.4 Remark Every Fuzzy set A on a nonempty set X is

 obviously an IFS having the form$$
\mathrm{A}=\left\{<x: \mu_{A}(x), 1-\mu_{A}(x)>: x \in X\right\}
$$

Using the definition of FMS and IFS, a new generalized concept can be defined as follows:
2.5 Definition [4] Let X be a nonempty set. An Intuitionistic Fuzzy Multiset A denoted by IFMS drawn from X is characterized by two functions : 'count membership' of A $\left(C M_{A}\right)$ and 'count non membership' of $A\left(C N_{A}\right)$ given respectively by $C M_{A}: X \rightarrow Q$ and $C N_{A}: X \rightarrow Q$ where Q is the set of all crisp multisets drawn from the unit interval [0, 1] such that for each $x \in X$, the membership sequence is defined as a decreasingly ordered sequence of elements in CMA(x) which is denoted by ($\left.\mu^{1} A(x), \mu^{2} A(x), \ldots, \mu^{P} A(x)\right)$ where $\left(\mu^{1}{ }_{A}(x) \geq \mu^{2} A(x) \geq \ldots \geq \mu^{P_{A}}(x)\right.$ and the corresponding non membership sequence will be denoted by ($\mathrm{v}^{1} \mathrm{~A}(\mathrm{x})$, $\mathrm{v}^{2} \mathrm{~A}(\mathrm{x}), \ldots, \mathrm{v}^{\mathrm{P}}{ }_{\mathrm{A}}(\mathrm{x})$) such that $0 \leq \mu^{\mathrm{i}} \mathrm{A}_{\mathrm{A}}(\mathrm{x})+\mathrm{v}^{\mathrm{i}} \mathrm{A}^{\prime}(\mathrm{x}) \leq 1$ for every x ϵX and $i=1,2, \ldots, p$.

An IFMS A is denoted by
$A=\left\{<x:\left(\mu^{1} A(x), \mu^{2} A(x), \ldots, \mu^{P_{A}}(x)\right),\left(v^{1} A(x), v^{2} A(x), \ldots, v^{P_{A}}(x)\right)\right.$ $>: x \in X\}$
2.6 Remark We arrange the membership sequence in decreasing order but the corresponding non membership sequence may not be in decreasing or increasing order.
2.7 Definition [4] For any two IFMSs A and B drawn from a set X, the following operations and relations will hold. Let $\mathrm{A}=\left\{\left\langle\mathrm{x}:\left(\mu^{1} \mathrm{~A}(\mathrm{x}), \mu^{2} \mathrm{~A}(\mathrm{x}), \ldots, \mu^{\mathrm{P}_{\mathrm{A}}}(\mathrm{x})\right),\left(\mathrm{v}^{1} \mathrm{~A}(\mathrm{x}), \mathrm{v}^{2} \mathrm{~A}(\mathrm{x}), \ldots, \mathrm{v}^{\mathrm{P}_{\mathrm{A}}}(\mathrm{x})\right)\right\rangle\right.$: $x \in X\}$ and
$B=\left\{<x:\left(\mu^{1} B(x), \mu^{2} B(x), \ldots, \mu^{P_{B}}(x)\right),\left(v^{1} B(x), v^{2} B(x), \ldots, v^{P_{B}}(x)\right)\right\rangle:$ $x \in X\}$ then

1. Inclusion

$$
\begin{aligned}
& \mathrm{A} \subset \mathrm{~B} \Leftrightarrow \mu^{\mathrm{j}}(\mathrm{x}) \leq \mu^{\mathrm{j}_{\mathrm{A}}}(\mathrm{x}) \text { and } \mathrm{v}^{\mathrm{j}}(\mathrm{x}) \geq \mathrm{v}^{\mathrm{j}}(\mathrm{x}) \\
& \mathrm{j}=1,2, \ldots, \mathrm{~L}(\mathrm{x}), \mathrm{x} \in \mathrm{X} \\
& \mathrm{~A}=\mathrm{B} \Leftrightarrow \mathrm{~A} \subset \mathrm{~B} \text { and } \mathrm{B} \subset \mathrm{~A}
\end{aligned}
$$

2. Complement
$\nabla \mathrm{A}=\left\{<\mathrm{x}:\left(\mathrm{v}^{1} \mathrm{~A}(\mathrm{x}), \ldots, \mathrm{V}^{\mathrm{P}_{\mathrm{A}}}(\mathrm{x})\right),\left(\mu^{1}{ }_{\mathrm{A}}(\mathrm{x}), \ldots \ldots \ldots, \mu^{\mathrm{P}_{A}}(\mathrm{x})\right)\right.$
$>: x \in X\}$
3. Union $(\mathrm{A} \cup \mathrm{B})$

In $A \cup B$ the membership and non membership values are obtained as follows.
$\mu_{\mathrm{A}}^{\mathrm{A}} \mathrm{B}(\mathrm{x})=\mu_{\mathrm{A}}(\mathrm{x}) \vee \mu_{\mathrm{B}}(\mathrm{x})$
$v^{j}{ }_{A} \cup B(x)=v^{j}{ }_{A}(x) \wedge v^{j}{ }_{B}(x)$
$j=1,2, \ldots, L(x), x \in X$.
4. Intersection $(A \cap B)$

In $A \cap B$ the membership and non membership values are obtained as follows.
$\mu^{j_{A}}{ }_{B}(x)=\mu^{j}(x) \wedge \mu^{j_{B}}(x)$
$\operatorname{vi}_{A_{\cap} B}(x)=\operatorname{vi}_{A}(x) \vee \operatorname{vi}_{B}(x)$
$j=1,2, \ldots, L(x), x \in X$.
5. Addition $(\mathrm{A} \oplus \mathrm{B})$

In $A \oplus B$ the membership and non membership values are obtained as follows.
$\mu_{\mathrm{i}_{\oplus}{ }_{B}}(\mathrm{x})=\mu_{\mathrm{A}}^{\mathrm{A}}(\mathrm{x})+\mu_{\mathrm{B}}(\mathrm{x})-\mu_{\mathrm{i}}^{\mathrm{A}}(\mathrm{x}) . \mu_{\mathrm{B}}(\mathrm{x})$
$\mathrm{vi}_{\mathrm{A}_{\oplus} \mathrm{B}}(\mathrm{x})=\mathrm{vi}_{\mathrm{A}}(\mathrm{x}) . \mathrm{v}_{\mathrm{B}}(\mathrm{x})$
$j=1,2, \ldots, L(x), x \in X$.
6. Multiplication $(\mathrm{A} \otimes \mathrm{B})$

In $A \otimes B$ the membership and non membership values are obtained as follows.
$\mu^{\mathrm{A}_{\otimes} \mathrm{B}}(\mathrm{x})=\mu_{\mathrm{A}}(\mathrm{x}) . \mu_{\mathrm{B}}(\mathrm{x})$

$j=1,2, \ldots, L(x), x \in X$.
here $\vee, \wedge, \ldots,+,-$ denotes maximum, minimum, multiplication, addition, subtraction of real numbers respectively.
2.8 Definition [5] Let X and Y be two nonempty sets and f :
$X \rightarrow Y$ be a mapping. Then
a) The image of the FMS $A \in F M(X)$ under the mapping f is denoted by $f(A)$ or $f[A]$, where

$$
\mathrm{CM}_{\mathrm{f}[\mathrm{~A}]}(\mathrm{y})=\left\{\begin{array}{lr}
\mathrm{v}_{\mathrm{f}(\mathrm{x})=\mathrm{y}} \mathrm{CM}_{\mathrm{A}}(\mathrm{x}) ; & \mathrm{f}^{-1}(\mathrm{y}) \neq \emptyset \\
0 & \text { otherwise }
\end{array}\right.
$$

b) The inverse image of the FMS $B \in F M(Y)$ under the mapping f is denoted by $f^{-1}(B)$ or $f^{-1}[B]$, where $C M_{f^{-1}[B]}(x)=C M_{B} f[x]$.
2.9 Definition [6] Let X and Y be two nonempty sets and f :
$X \rightarrow Y$ be a mapping. Then
a) If $B=\{<y, \mu B(y), v B(y)>: y \in Y\}$ is an IFS in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the IFS in $X \quad$ defined by

$$
\left.\mathrm{f}^{-1}(\mathrm{~B})=\left\{<\mathrm{x}, \mathrm{f}^{-1}\left(\mu_{B}\right)(x), \mathrm{f}^{-1}\left(v_{B}\right)(x)\right)>: x \in \mathrm{X}\right\}
$$

b) If $\left.A=\left\{<x, \lambda_{A}(x), \gamma_{A}(x)\right\rangle: x \in X\right\}$ is an IFS in X, then the image of A under f, denoted by $f(A)$, is the IFS in Y defined by,

$$
\begin{aligned}
& \left.\mathrm{f}(\mathrm{~A})=\left\{\left\langle y, f\left(\lambda_{A}\right)(y), \mathrm{f}_{-1}\left(\gamma_{A}\right)(y)\right)\right\rangle: \mathrm{y} \in \mathrm{Y}\right\} \text { where } \\
& \mathrm{f}\left(\lambda_{\mathrm{A}}\right)(\mathrm{y})=\left\{\begin{array}{cc}
\sup _{\mathrm{xef}^{-1}(\mathrm{y})} \lambda_{\mathrm{A}}(\mathrm{x}) ; & \mathrm{f}^{-1}(\mathrm{y}) \neq \varnothing \\
0 & \text { otherwise }
\end{array}\right. \\
& \mathrm{f}_{-1}\left(\gamma_{\mathrm{A}}\right)(\mathrm{y})= \begin{cases}\inf _{\mathrm{xef}} \mathrm{~F}^{-1}(\mathrm{y}) \\
0 & \gamma_{\mathrm{A}}(\mathrm{x}) ; \\
\mathrm{f} & \mathrm{f}^{-1}(\mathrm{y}) \neq \varnothing \\
\text { otherwise }\end{cases}
\end{aligned}
$$

In the next section we amalgamate the above two definitions of functions on FMS and IFS to define the functions on IFMS.

III. FUNCTIONS ON INTUITIONISTIC FUZZY MULTISETS

3.1 Definition Let X and Y be two nonempty sets and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a mapping. Then
a) The image of an IFMS A in X under the mapping f is denoted by $f(A)$ is defined as

$$
\begin{aligned}
& \mathrm{CM}_{\mathrm{f}[\mathrm{~A}]}(\mathrm{y})=\left\{\begin{array}{lr}
\mathrm{v}_{\mathrm{f}(\mathrm{x})=\mathrm{y}} \mathrm{CM}_{\mathrm{A}}(\mathrm{x}) ; & \mathrm{f}^{-1}(\mathrm{y}) \neq \varnothing \\
0 & \text { otherwise }
\end{array}\right. \\
& \mathrm{CN}_{\mathrm{f}[\mathrm{~A}](\mathrm{y})}=\left\{\begin{array}{lr}
\Lambda_{\mathrm{f}(\mathrm{x})=\mathrm{y}} \mathrm{CN}_{\mathrm{A}}(\mathrm{x}) ; & \mathrm{f}^{-1}(\mathrm{y}) \neq \emptyset \\
1 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

b) The inverse image of the IFMS B in Y under the mapping f is denoted by $f^{-1}(B)$ where

$$
C M_{f^{-1}[B]}(x)=C M_{B} f[x], C N_{f^{-1}[B]}(x)=C N_{B} f[x]
$$

In the next proposition we discuss some of the properties of functions which we have proved for FMS in [5].
3.2 Proposition Let X, Y and Z be three nonempty sets and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two mappings. If $A, A_{i} \in \operatorname{IFMS}(X), B, B_{i} \in \operatorname{IFMS}(Y), C \in \operatorname{IFMS}(Z) ; i \in$ I then
a) $\mathrm{A}_{1} \subseteq \mathrm{~A}_{2} \Rightarrow \mathrm{f}\left(\mathrm{A}_{1}\right) \subseteq \mathrm{f}\left(\mathrm{A}_{2}\right)$
b) $\mathrm{B}_{1} \subseteq \mathrm{~B}_{2} \Rightarrow \mathrm{f}^{-1}\left(\mathrm{~B}_{1}\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{~B}_{2}\right)$
c) $f\left[U_{i \in I} A_{i}\right]=U_{i \in I} f\left[A_{i}\right]$
d) $f^{-1}\left[u_{i \in I} B_{i}\right]=u_{i \in I} f^{-1}\left[B_{i}\right]$
e) $f^{-1}\left[n_{i \in I} B_{i}\right]=\bigcap_{i \in I} f^{-1}\left[B_{i}\right]$
f) $g\left[f\left(A_{i}\right)\right]=\left[g f\left(A_{i}\right)\right.$ and $f^{-1}\left[g^{-1}\left(B_{j}\right)\right]=[g]^{-1}\left(B_{j}\right)$

Proof:

a) \quad Let $\mathrm{A}_{1} \subseteq \mathrm{~A}_{2}$.

Then $\mathrm{CM}_{\mathrm{A}_{1}}(\mathrm{x}) \leq \mathrm{CM}_{\mathrm{A}_{2}}(\mathrm{x}) \forall \mathrm{x} \in \mathrm{X}$
$\Rightarrow \mathrm{V}_{\mathrm{f}(\mathrm{x})=\mathrm{y}} \mathrm{CM}_{\mathrm{A}_{1}}(\mathrm{x}) \leq \mathrm{V}_{\mathrm{f}(\mathrm{x})=\mathrm{y}} \mathrm{CM}_{\mathrm{A}_{2}}(\mathrm{x})$
$\Rightarrow \mathrm{CM}_{\mathrm{f}\left(\mathrm{A}_{1}\right)}(\mathrm{y}) \leq \mathrm{CM}_{\mathrm{f}\left(\mathrm{A}_{2}\right)}(\mathrm{y}) \quad \forall \mathrm{y}=\mathrm{f}(\mathrm{x})$
Also $\mathrm{CN}_{\mathrm{A}_{1}}(\mathrm{x}) \geq \mathrm{CN}_{\mathrm{A}_{2}}(\mathrm{x}) \forall \mathrm{x} \in \mathrm{X}$
$\Rightarrow \Lambda_{f(x)=y} C N_{A_{1}}(\mathrm{x}) \geq \Lambda_{f(x)=y} \mathrm{CN}{A_{A_{2}}}(\mathrm{x})$
$\Rightarrow \mathrm{CN}_{\mathrm{f}\left(\mathrm{A}_{1}\right)}(\mathrm{y}) \geq \mathrm{CN}_{\mathrm{f}\left(\mathrm{A}_{2}\right)}(\mathrm{y}) \quad \forall \mathrm{y}=\mathrm{f}(\mathrm{x})$
(1) and (2) $\Rightarrow f\left(\mathrm{~A}_{1}\right) \subseteq f\left(\mathrm{~A}_{2}\right)$
b) Let $\mathrm{B}_{1} \subseteq \mathrm{~B}_{2}$
$\Rightarrow \mathrm{CM}_{\mathrm{B}_{1}}(\mathrm{f}(\mathrm{x})) \leq \mathrm{CM}_{\mathrm{B}_{2}}\left(\mathrm{f}(\mathrm{x})\right.$ and $\mathrm{CN}_{\mathrm{B}_{1}}(\mathrm{f}(\mathrm{x})) \geq \mathrm{CN}_{\mathrm{B}_{2}}(\mathrm{f}(\mathrm{x}))$
$\Rightarrow \mathrm{CM}_{\mathrm{f}^{-1}\left(\mathrm{~B}_{1}\right)}(\mathrm{x}) \leq \mathrm{CM}_{\mathrm{f}^{-1}\left(\mathrm{~B}_{2}\right)}(\mathrm{x})$ and $\mathrm{CN}_{\mathrm{f}^{-1}\left(\mathrm{~B}_{1}\right)}(\mathrm{x}) \geq$
$\mathrm{CN}_{\mathrm{f}^{-1}\left(\mathrm{~B}_{2}\right)}$ (x) by 3.1(b)
$\Rightarrow \mathrm{f}^{-1}\left(\mathrm{~B}_{1}\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{~B}_{2}\right)$.
c) Let $\mathrm{A}=\bigcup \mathrm{A}_{\mathrm{i}}$

$$
\begin{align*}
& \text { So } \mathrm{CM}_{\mathrm{f}\left(\mathrm{U}_{\mathrm{i} I \mathrm{~A}} \mathrm{~A}_{\mathrm{i}}\right)}(\mathrm{y})=\mathrm{CM}_{\mathrm{f}(\mathrm{~A})}(\mathrm{y}) \\
& =\mathrm{V}_{\mathrm{f}(\mathrm{x})=\mathrm{y}} \mathrm{CM}_{\mathrm{A}}(\mathrm{x}) \\
& =\mathrm{V}_{\mathrm{f}(\mathrm{x})=\mathrm{y}}\left\{\mathrm{~V}_{\mathrm{ifI}} \mathrm{CM}_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x})\right\} \\
& =\mathrm{V}_{\mathrm{i} \in \mathrm{I}}\left\{\mathrm{~V}_{\mathrm{f}(\mathrm{x})=\mathrm{y}} \mathrm{CM}_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x})\right\} \\
& =\mathrm{V}_{\mathrm{i} \in \mathrm{I}} \mathrm{CM}_{\mathrm{f}\left(\mathrm{~A}_{\mathrm{i}}\right)}(\mathrm{y}) \\
& =\mathrm{CM}_{\mathrm{U}_{\mathrm{iel}}\left[f\left(\mathrm{~A}_{\mathrm{i}}\right]\right]}(\mathrm{y}) \tag{1}
\end{align*}
$$

And $\mathrm{CN}_{\mathrm{f}\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{A}_{\mathrm{i}}\right)}(\mathrm{y})=\mathrm{CN}_{\mathrm{f}(\mathrm{A})}(\mathrm{y})$
$=\Lambda_{f(x)=y} C N_{A}(\mathrm{x})$
$=\Lambda_{f(x)=y}\left\{\Lambda_{\mathrm{ifI}} \mathrm{CN}_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x})\right\}$
$=\Lambda_{\mathrm{i} \in \mathrm{I}}\left\{\Lambda_{\mathrm{f}(\mathrm{x})=\mathrm{y}} \mathrm{CN}_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x})\right\}$
$\left.=\Lambda_{\mathrm{i} \in \mathrm{I}} \mathrm{CN}_{\mathrm{f}\left(\mathrm{A}_{\mathrm{i}}\right)}(\mathrm{x})\right\}$
$=\mathrm{CN}_{\mathrm{U}_{\mathrm{ieI}}\left[f\left(\mathrm{~A}_{\mathrm{i}}\right)\right]}(\mathrm{y})$

From (1) and (2) $\mathrm{f}\left[\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{A}_{\mathrm{i}}\right]=\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{f}\left[\mathrm{A}_{\mathrm{i}}\right]$
d) Let $U_{i \in I} B_{i}=B$
$\mathrm{CM}_{\mathrm{f}^{-1}\left(\mathrm{U}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}\right)}(\mathrm{x})=\mathrm{CM}_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{x})$
$=\mathrm{CM}_{\mathrm{B}} \mathrm{f}(\mathrm{x})$
$=V_{i \in I} C M_{B_{i}} f(x)$
$=\mathrm{V}_{\mathrm{itI}} \mathrm{CM}_{\mathrm{f}^{-1}\left[\mathrm{~B}_{\mathrm{i}}\right]}(\mathrm{x})$

$$
=\mathrm{CM}_{\mathrm{U}_{\mathrm{i} \mathrm{II}} \mathrm{f}^{-1}\left(\mathrm{~B}_{\mathrm{i}}\right)}(\mathrm{x})
$$

(1)

And $\mathrm{CN}_{\mathrm{f}^{-1}\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{B}_{\mathrm{i}}\right)}(\mathrm{x}) \quad=\mathrm{CN}_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{x})$
$=\mathrm{CN}_{\mathrm{B}} \mathrm{f}(\mathrm{x})$
$=\Lambda_{\mathrm{i} \in \mathrm{I}} \mathrm{CN}_{\mathrm{B}_{\mathrm{i}}} \mathrm{f}(\mathrm{x})$
$=\Lambda_{\mathrm{i} \in \mathrm{I}} \mathrm{CN}_{\mathrm{f}^{-1}\left(\mathrm{~B}_{\mathrm{i}}\right)^{\mathrm{X}}}$
$=\mathrm{CN}_{\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{f}^{-1}\left(\mathrm{~B}_{\mathrm{i}}\right)}(\mathrm{x})$
......................(2)
So $f^{-1}\left[U_{i \in I} B_{i}\right]=U_{i \in I} f^{-1}\left[B_{i}\right]$.
e) Let $\bigcap_{i \in I} B_{i}=B$
$\mathrm{CM}_{\mathrm{f}^{-1}\left(\cap_{\mathrm{i} \in \mathrm{I}} \mathrm{B}_{\mathrm{i}}\right)}(\mathrm{x})=\mathrm{CM}_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{x})$
$=\mathrm{CM}_{\mathrm{B}} \mathrm{f}(\mathrm{x})$
$=\Lambda_{\mathrm{i} \in \mathrm{I}} \mathrm{CM}_{\mathrm{B}_{\mathrm{i}}} \mathrm{f}(\mathrm{x})$
$=\Lambda_{\mathrm{i} \in \mathrm{I}} \mathrm{CM}_{\mathrm{f}^{-1}\left(\mathrm{~B}_{\mathrm{i}}\right)}(\mathrm{x})$
$=\mathrm{CM}_{\mathrm{n}_{\mathrm{i} \in \mathrm{I}} \mathrm{f}^{-1}\left(\mathrm{~B}_{\mathrm{i}}\right)}(\mathrm{x})$

And $\mathrm{CN}_{\mathrm{f}^{-1}\left(\cap_{\mathrm{iEI}} \mathrm{B}_{\mathrm{i}}\right)}(\mathrm{x})=\mathrm{CN}_{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{x})$
$=\mathrm{CN}_{\mathrm{B}} \mathrm{f}(\mathrm{x})$
$=V_{i \in I} \mathrm{CN}_{\mathrm{B}_{\mathrm{i}}} \mathrm{f}(\mathrm{x})$
$=\mathrm{V}_{\mathrm{i} \in \mathrm{I}} \mathrm{CN}_{\mathrm{f}^{-1} \mathrm{~B}_{\mathrm{i}}} \mathrm{X}$
$=\mathrm{CN}_{\mathrm{n}_{\mathrm{i} I \mathrm{I}} \mathrm{f}^{-1}\left(\mathrm{~B}_{\mathrm{i}}\right)}(\mathrm{x})$
\qquad
So $f^{-1}\left[\cap_{i \in I} B_{i}\right]=\bigcap_{i \in I} f^{-1}\left[B_{i}\right]$
f) Let $A \in \operatorname{IFMS}(X)$ and $z \in Z$

Then $\mathrm{CM}_{\mathrm{g}[\mathrm{f}(\mathrm{A})]}(\mathrm{z})=\mathrm{V}_{\mathrm{g}(\mathrm{y})=\mathrm{z}} \mathrm{CM}_{\mathrm{f}(\mathrm{A})}(\mathrm{y}) ; \mathrm{y} \in \mathrm{Y}$

$$
=\mathrm{V}_{\mathrm{g}(\mathrm{y})=\mathrm{z}}\left\{\mathrm{~V}_{\mathrm{f}(\mathrm{x})=\mathrm{y}} \mathrm{CM}_{\mathrm{A}}(\mathrm{x})\right\} ; \mathrm{y} \in \mathrm{Y} \text { and } \mathrm{x} \in
$$

X
$=\mathrm{V}\left\{\mathrm{V}\left\{\mathrm{CM}_{\mathrm{A}}(\mathrm{x}) ; \mathrm{x} \in \mathrm{X}\right.\right.$ and $\left.\mathrm{f}(\mathrm{x})=\mathrm{y}\right\} ; \mathrm{y} \in$
Y and $\mathrm{g}(\mathrm{y})=\mathrm{z}\}$

$$
\begin{align*}
& =\mathrm{V}\left\{\mathrm{CM}_{\mathrm{A}}(\mathrm{x}) ; \mathrm{x} \in \mathrm{X} \text { and }[\mathrm{gf}](\mathrm{x})=\mathrm{z}\right\} \\
& =\mathrm{V}_{[\mathrm{gf}](\mathrm{x})=\mathrm{z}} \mathrm{CM}_{\mathrm{A}}(\mathrm{x}) ; \mathrm{x} \in \mathrm{X} \\
& =\mathrm{CM}_{[\mathrm{gf]}](\mathrm{A})}(\mathrm{z}) \tag{1}
\end{align*}
$$

And $\mathrm{CN}_{\mathrm{g}[\mathrm{f}(\mathrm{A})]}(\mathrm{z})=\Lambda_{\mathrm{g}(\mathrm{y})=\mathrm{z}} \mathrm{CN}_{\mathrm{f}(\mathrm{A})}(\mathrm{y}) ; \mathrm{y} \in \mathrm{Y}$

$$
\begin{aligned}
& =\Lambda_{\mathrm{g}(\mathrm{y})=\mathrm{z}}\left\{\Lambda_{\mathrm{f}(\mathrm{x})=\mathrm{y}} \mathrm{CN}_{\mathrm{A}}(\mathrm{x})\right\} ; \mathrm{y} \in \mathrm{Y} \text { and } \mathrm{x} \in \mathrm{X} \\
= & \Lambda\left\{\Lambda\left\{\mathrm{CN}_{\mathrm{A}}(\mathrm{x}) ; \mathrm{x} \in \mathrm{X} \text { and } \mathrm{f}(\mathrm{x})=\mathrm{y}\right\} ; \mathrm{y} \in\right.
\end{aligned}
$$

Y and $g(y)=z\}$

$$
\begin{align*}
= & \Lambda\left\{\mathrm{CN}_{\mathrm{A}}(\mathrm{x}) ; \mathrm{x} \in \mathrm{X} \text { and }[\mathrm{gf}](\mathrm{x})=\mathrm{z}\right\} \\
= & \Lambda_{[\mathrm{ff}](\mathrm{x})=\mathrm{z}} \mathrm{CN}(\mathrm{x}) ; \mathrm{x} \in \mathrm{X} \\
= & \mathrm{CN}_{[\mathrm{gf}](\mathrm{A})}(\mathrm{z}) \tag{2}\\
& \cdots \cdots \cdots \cdots \cdots \cdots(2) \\
(1) \text { and }(2) & \Rightarrow \mathrm{g}[\mathrm{f}(\mathrm{~A})]=[\mathrm{gf}](\mathrm{A}) .
\end{align*}
$$

Using the first part and 3.1(b) we can prove the second part.

IV. INTUITIONISTIC FUZZY MULTISET TOPOLOGICAL SPACES

In this section we introduced the concept of Intuitionistic Fuzzy multiset Topology (IFMT). Here we extend the concept of Intuitionistic fuzzy topological spaces introduced by Dogan Coker in [6] to the case of Intuitionistic fuzzy multisets.

For this first we introduced $\neg 0$ and $\neg 1$ in a nonempty set X as follows.

4.1Definition

Let $\neg 0=\{<\mathrm{x}:(0,0, \ldots \ldots ., 0),(1,1, \ldots \ldots \ldots, 1): x \in X\}$

$$
\neg 1=\{<\mathrm{x}:(1,1, \ldots \ldots .1),(0,0, \ldots \ldots \ldots, 0): x \in X\}
$$

4.2 Definition An intuitionistic Fuzzy multiset topology (IFMT) on X is a family г of intuitionistic fuzzy multisets (IFMSs) such that

1. $\neg 0, \neg 1 \in \Gamma$
2. $\mathrm{G}_{1} \cap \mathrm{G}_{2} \in \mathrm{r}$ for any $\mathrm{G}_{1}, \mathrm{G}_{2} \in \mathrm{r}$
3. $\mathrm{UG}_{\mathrm{i}} \epsilon \mathrm{I}$ for any arbitrary family $\left\{\mathrm{G}_{\mathrm{i}}: \mathrm{i} \in \mathrm{I}\right\}$ in r

Then the pair (X, r) is called Intuitionistic Fuzzy multiset topological space (IFMT for short) and any IFMS in r is known as an open intuitionistic fuzzy multiset (OIFMS in short) in X.
4.3 Remark The complement of an OIFMS is called closed intuitionistic Fuzzy multiset (CIFMS in short)
4.4 Example Let $X=\{1,2\}$ and define the IFMSs in X as follows.

For $\mathrm{n} \in \mathrm{N}^{+}, \mathrm{p} \in \mathrm{N}$
$G_{n} \quad=\{<1:(n / n+1, n+1 / n+2, \ldots, n+p / n+p+1),(1 / n+2$, $1 / n+3, \ldots, 1 / n+p+2)>$,
$<2: \quad(\mathrm{n}+1 / \mathrm{n}+2, \quad \mathrm{n}+2 / \mathrm{n}+3, \ldots, \mathrm{n}+\mathrm{p}+1 / \mathrm{n}+\mathrm{p}+2), \quad(1 / \mathrm{n}+3$, $1 / n+4, \ldots, 1 / n+p+3)>\}$

Let $\mathrm{r}=\{\neg 0, \neg 1\} \mathrm{U}\left\{\mathrm{G}_{\mathrm{n}}\right\}$
Then (X, r) forms an IFMT. Note that here membership values forms a monotonically increasing sequence and
nonmembership values forms a monotonically decreasing sequence.

Construction of IFMTs

Here we construct Intuitionistic fuzzy multiset topology from a given IFMT. Dogan Coker in [6] has constructed these topologies for IFS.

Consider a nonempty set X. Let $A=\left\{<x:\left(\mu^{1} A(x)\right.\right.$, $\left.\left.\mu^{2} A(x), \ldots, \mu^{P_{A}}(x)\right),\left(v^{1} A(x), v^{2} A(x), \ldots, v^{P_{A}}(x)\right)>: x \in X\right\}$ be an IFMS. Define
[] $\mathrm{A}=\left\{<\mathrm{x}:\left(\mu^{1}{ }_{\mathrm{A}}(\mathrm{x}), \mu^{2}{ }_{\mathrm{A}}(\mathrm{x}), \ldots, \mu^{\mathrm{P}_{\mathrm{A}}}(\mathrm{x})\right),\left(1-\mu^{1}{ }_{\mathrm{A}}(\mathrm{x}), 1-\mu^{2}{ }_{\mathrm{A}}(\mathrm{x}), \ldots, 1-\right.\right.$ $\left.\left.\mu^{\mathrm{P}} \mathrm{A}(\mathrm{x})\right)>: \mathrm{x} \in \mathrm{X}\right\}$
4.5 Proposition Let (X, Γ) be an IFMT on X. Then $\Gamma_{0,1}=\{[] A$: A $\in \Gamma\}$ is an IFMS.

Proof

It is obvious that $\neg 0, \neg 1 € \Gamma 0,1$.
Let $A_{1}, A_{1} \in \Gamma 0,1$.
Then $\mathrm{A}_{1}=\left\{[] \mathrm{A}_{1}{ }^{\prime} ; \mathrm{A}_{1}{ }^{\prime} \in \Gamma\right\}$ and $\mathrm{A}_{2}=\left\{[] \mathrm{A}_{2}{ }^{\prime} ; \mathrm{A}_{2}{ }^{\prime} \in \Gamma\right\}$
$\Rightarrow A_{1}=\left\{<x:\left(\mu^{1}{ }_{A^{1}}(x), \mu^{2} A^{\prime}(x), \ldots, \mu^{p} A_{A^{\prime}}(x)\right),\left(1-\mu^{1}{ }_{A^{\prime}}(x), 1-\right.\right.$ $\left.\left.\mu^{2} \mathrm{Al}^{1}(\mathrm{x}), \ldots, 1-\mu^{\mathrm{p}} \mathrm{Al}^{\prime}(\mathrm{x})\right)>: \mathrm{x} \in \mathrm{X}\right\}$ and
$\mathrm{A}_{2}=\left\{<\mathrm{x}:\left(\mu^{1} \mathrm{~A}^{2}(\mathrm{x}), \quad \mu^{2} \mathrm{~A}^{2}(\mathrm{x}), \ldots, \quad \mu_{\mathrm{A}_{\mathrm{A}^{2}}}(\mathrm{x})\right),\left(1-\mu^{1}{ }_{\mathrm{A}^{2}}(\mathrm{x}), 1-\right.\right.$ $\left.\left.\mu^{2} \mathrm{~A}^{2}(\mathrm{x}), \ldots, 1-\mu^{\mathrm{p}_{\mathrm{A} 2^{2}}}(\mathrm{x})\right)>: \mathrm{x} \in \mathrm{X}\right\}$

Then $A_{1} \cap A_{2}=\left\{<x:\left(\mu^{1} A_{1^{\prime}}(x) \wedge \mu^{1} \mathrm{~A}^{2}(x), \ldots, \mu^{p_{A^{\prime}}}(x) \wedge\right.\right.$ $\left.\mu_{\mathrm{A}^{2}}(\mathrm{x})\right),\left(\left(1-\mu^{1} \mathrm{Al}^{\prime}(\mathrm{x})\right) \vee\left(1-\mu^{1} \mathrm{~A}^{2}(\mathrm{x}), \ldots, 1-\mu_{\mathrm{A}_{\mathrm{A}^{\prime}}}(\mathrm{x}) \vee\left(1-\mu_{\mathrm{P}_{\mathrm{A}^{\prime}}}(\mathrm{x})\right)\right.\right.$ $>: x \in X\}$
[]$\left(\mathrm{A}_{1}{ }^{\prime} \cap \mathrm{A}_{2^{\prime}}\right)=[]\left\langle<\mathrm{x}:\left(\mu^{1} \mathrm{Al}^{\prime}(\mathrm{x}) \wedge \mu^{1}{ }_{\mathrm{A}^{\prime}}(\mathrm{x}), \ldots, \mu_{\mathrm{A}_{\mathrm{A}^{\prime}}}(\mathrm{x}) \wedge \mu_{\mathrm{p}_{\mathrm{A}^{\prime}}(\mathrm{x})}\right),(\right.$ $\left.\left.\mathrm{V}^{1} \mathrm{Al}^{\prime}(\mathrm{x}) \vee \mathrm{V}^{1} \mathrm{~A}^{2}(\mathrm{x}), \ldots, \mathrm{V}_{\mathrm{Al}^{1}}(\mathrm{x}) \vee \mathrm{V}^{\mathrm{A}^{2}}(\mathrm{x})\right)>: \mathrm{x} \in \mathrm{X}\right\}$

Since 1- $\left\{\mu^{\mathrm{i}}{ }_{\mathrm{A} 1^{\prime}}(\mathrm{x}) \wedge \mu^{\mathrm{i}}{ }_{\mathrm{A}^{\prime}}(\mathrm{x})\right\}=\left\{1-\mu^{\mathrm{i}}{ }^{\mathrm{A} 1^{\prime}}(\mathrm{x})\right\} \vee\left\{1-\mu^{\mathrm{i}}{ }_{\mathrm{A} 2^{\prime}}(\mathrm{x})\right\}$
$\mathrm{A}_{1} \cap \mathrm{~A}_{2}=[]\left(\mathrm{A}_{1}{ }^{\prime} \cap \mathrm{A}_{2}{ }^{\prime}\right) \in{ }_{\Gamma 0,1}$
Now If $A_{i} \in[0,1 ; i \in I$
Then $\mathrm{A}_{\mathrm{i}}=\left\{[] \mathrm{A}_{\mathrm{i}}{ }^{\prime} ; \mathrm{A}_{\mathrm{i}}{ }^{\prime} \in \Gamma\right\}$
$U A_{i}=U\left([] A_{i}{ }^{\prime}\right)=[]\left(\mathrm{UA}_{i}{ }^{\prime}\right) \in \Gamma 0,1$.
Hence the proof.

Closure and Interior

4.6 Definition Let (X, r) be an IFMT and A be an IFMS in X . Then closure of A denoted by $\operatorname{cl}(\mathrm{A})$ is defined as $\operatorname{cl}(\mathrm{A})=$ $\cap\{\mathrm{M}$: M is closed in X and $\mathrm{A} \subseteq M\}$.
4.7 Definition Let (X, r) be an IFMT and B be an IFMS in X . Then interior of B is denoted by
$\operatorname{int}(B)$ is defined as $\operatorname{int}(B)=U\{N: N$ is open in X and $N \subseteq B\}$.
4.8 Definition Let $\left(X, \Gamma_{1}\right)$ and $\left(X, \Gamma_{2}\right)$ be two IFMTs on X. Then Γ_{1} is coarser (weaker) than Γ_{2} if $A \in \digamma_{2}$ for each $A \in \digamma_{1}$. It is denoted as $\Gamma_{1 \subseteq} \Gamma^{1}$.
4.9 Proposition Let $\left\{\mathrm{I}_{\mathrm{i}}: \mathrm{I} \in \mathrm{I}\right\}$ be a family of IFMTs on X . Then $\cap_{r_{i}}$ is an IFMT on X and it is the coarsest IFMT on X containing all the ri's.

Proof follows from the definitions 4.2 and 4.8.
4.10 Proposition Let (X, r) be an IFMT and A be an IFMS in X. Then $\mathrm{cl}(\mathrm{A})$ is a CIFMS.

Proof:
$\mathrm{cl}(\mathrm{A})=\cap\{\mathrm{M}: \mathrm{M}$ is closed in X and $\mathrm{A} \subseteq \mathrm{M}\}$
$\Rightarrow \nabla \mathrm{cl}(\mathrm{A})$ is the union of all open sets and hence it is open.
$\Rightarrow \mathrm{cl}(\mathrm{A})$ is a CIFMS.
4.11 Proposition Let (X, r) be an IFMT and A be an IFMS in X. Then int(A) is an OIFMS.

Proof:
Since int(A) is the union of all OIFMS which is contained in A, the proof follows from definition 4.2.3.

From the above two propositions and by the definitions it is clear that $\mathrm{cl}(\mathrm{A})$ is the smallest CIFMS which contains A and $\operatorname{int}(A)$ is the largest open set which is contained in A.
4.12 Proposition Let (X, r) be an IFMT and A be an IFMS. Then $\operatorname{cl}(\nabla \mathrm{A})=\nabla(\operatorname{int}(\mathrm{A}))$

Proof:
Let $\mathrm{A}=\left\{<\quad \mathrm{x} \quad: \quad\left(\mu^{1} \mathrm{~A}(\mathrm{x}), \mu^{2} \mathrm{~A}(\mathrm{x}), \ldots\right.\right.$, $\left.\left.\mu^{P_{A}}(x)\right),\left(\left(v^{1} A(x), v^{2} A(x), \ldots, v^{P_{A}}(x)\right)>\right)>: x \in X\right\}$

Let $A_{i}=\left\{<\quad x \quad: \quad\left(\mu^{1}{ }_{A i}(x), \quad \mu^{2} A_{i}(x), \ldots\right.\right.$, $\left.\left.\mu^{\mathrm{p}_{\mathrm{Ai}}}(\mathrm{x})\right),\left(\left(\mathrm{v}^{1}{ }_{\mathrm{Ai}}(\mathrm{x}), \mathrm{V}^{2}{ }_{A \mathrm{i}}(\mathrm{x}), \ldots, \mathrm{V}^{\mathrm{P}}{ }_{\mathrm{Ai}}(\mathrm{x})\right)>\right)>: \mathrm{x} \in \mathrm{X}, \mathrm{i} \in \mathrm{I}\right\}$ be the family of OIFMSs which is contained in A.

Then $\mu_{i_{i}} \leq \mu^{j_{A}}$ and $v^{j} A_{i i} \geq v_{i}^{j} ; i \in I, j=1,2, \ldots, p$

And

$$
\begin{align*}
& \operatorname{int}(\mathrm{A})=\{< \\
& \left.x:\left(V \mu_{A_{i}}^{1}(\mathrm{x}), \ldots, \mathrm{V} \mathrm{\mu}^{\mathrm{p}}{ }_{A_{\mathrm{i}}}(\mathrm{x})\right),\left(\wedge \mathrm{v}_{{ }_{A_{i}}}(\mathrm{x}), \ldots, \wedge \mathrm{v}_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x})\right)>: x \in \mathrm{X}\right\} \\
& \Rightarrow \\
& \nabla(\operatorname{int}(A))=\{< \\
& x:\left(\Lambda v^{1}{ }_{A_{i}}(\mathrm{x}), \ldots, \wedge^{\mathrm{p}}{ }_{A_{\mathrm{i}}}(\mathrm{x})\right),\left(\vee \mu_{A_{\mathrm{i}}}^{1}(\mathrm{x}), \ldots ., \mathrm{V}^{\mathrm{p}}{ }_{A_{\mathrm{i}}}(\mathrm{x})\right)> \\
& : x \in \mathrm{X}\} \tag{2}
\end{align*}
$$

Now $\nabla A=\left\{<x:\left(\left(v^{1}{ }_{A}(x), V^{2}{ }_{A}(x), \ldots, V^{P}{ }_{A}(x)\right),\left(\mu^{1}{ }_{A}(x), \mu^{2} A(x), \ldots\right.\right.\right.$, $\left.\left.\mu^{P_{A}}(\mathrm{x})\right)>: \mathrm{x} \in \mathrm{X}\right\}$

Also from (1) it is clear that $\left\{\nabla A_{i} ; i \in I\right\}$ is the family of CIFMTs containing $\nabla \mathrm{A}$.
\Rightarrow
$\operatorname{cl}(\nabla \mathrm{A})=\{<$
$x:\left(\Lambda \mathrm{v}^{1}{ }_{\mathrm{A}_{\mathrm{i}}}(\mathrm{x}), \ldots, \wedge^{\mathrm{p}}{ }_{A_{\mathrm{i}}}(\mathrm{x})\right),\left(\vee \mu_{A_{\mathrm{i}}}^{1}(\mathrm{x}), \ldots ., \mathrm{V}^{\mathrm{p}}{ }_{A_{\mathrm{i}}}(\mathrm{x})\right)>$ $: x \in \mathrm{X}\}$

From (2) and (3) $\mathrm{cl}(\nabla \mathrm{A})=\nabla(\operatorname{int}(\mathrm{A}))$.
4.13 Proposition Let (X, r) be an IFMT and A be an IFMS. Then $\operatorname{int}(\nabla \mathrm{A})=\nabla(\mathrm{cl}(\mathrm{A}))$

Proof is similar to proposition 4.12.
The following properties can be easily derived from the definitions.
4.14 Proposition Let (X, r) be an IFMT and A and B are OIFMSs. Then the following properties hold.
I. $\quad \operatorname{int}(\mathrm{A}) \subseteq \mathrm{A}$
II. $\quad \mathrm{A} \subseteq \mathrm{cl}(\mathrm{A})$
III. $\quad \mathrm{A} \subseteq \mathrm{B} \Rightarrow \operatorname{int}(\mathrm{A}) \subseteq \operatorname{int}(\mathrm{B})$
IV. $\quad \mathrm{A} \subseteq \mathrm{B} \Rightarrow \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{cl}(\mathrm{B})$
V. $\quad \operatorname{int}(\neg 1)=\neg 1$
VI. $\quad \operatorname{cl}(\neg 0)=\neg 0$
4.15 Proposition Let (X, r) be an IFMT and A be an IFMS in X. Then A is a CIFMS if and only if $\operatorname{cl}(A)=A$.

Proof:
Assume that A is a CIFMS.
From 4.14.2, $\quad \mathrm{A} \subseteq \mathrm{cl}(\mathrm{A})$

Since A is a $\mathrm{CIFMS}, \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{A}$

From (1) and (2) $\mathrm{cl}(\mathrm{A})=\mathrm{A}$.
Now assume the converse. Hence by proposition 4.10, A is a CIFMS.

Hence the proof.
In the same way we can prove the next proposition.
4.16 Proposition Let (X, r) be an IFMT and A be an IFMS in X. Then A is an OIFMS if and only if $\operatorname{int}(A)=A$.

Continuous Functions

4.17 Definition Let (X, r) and (Y, ϕ) be two IFMTs. A function $f: X \rightarrow Y$ is said to be Continuous if and only if inverse image of each OIFMS in ϕ is an OIFMS in г.

Next we discuss some of the equivalence relations of Continuous functions.
4.18 Theorem Let (X, r) and (Y, ϕ) be two IFMTs. Then the function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is Continuous if and only if inverse image of each CIFMS in ϕ is a CIFMS in $г$.

Proof:

Assume that f is continuous and C be a CIFMS in ϕ.
To prove $f^{-1}(C)$ is closed, it is enough to show that $\neg f^{-1}(C)$ is an OIFMS in г.

Now the inverse image of the IFMS C in Y under the mapping f is denoted by $f^{-1}(C)$ where

$$
\begin{align*}
& \quad C M_{f^{-1}[C]}(x)=C M_{C} f[x], C N_{f^{-1}[C]}(x)=C N_{C} f[x] \\
& \Rightarrow \mathrm{f}^{-1}(\mathrm{C})=\left\{x:<C M_{C} f[x], C N_{C} f[x]>\right\} \\
& \Rightarrow \mathrm{f}^{-1}(\mathrm{C})=\left\{x:<C N_{C} f[x], C M_{C} f[x]>\right\} \\
& \ldots \ldots \ldots \ldots . .(1) \\
& \text { Now } \mathrm{f}^{-1}(\neg \mathrm{C})=\mathrm{f}^{-1}\left\{y:<C N_{C}(y), C M_{C}(y)>\right\} \\
& \Rightarrow \mathrm{f}^{-1}(\neg \mathrm{C})=\left\{x:<C N_{C} f[x], C M_{C} f[x]>\right\} \tag{2}
\end{align*}
$$

Where $y=f(x)$
From (1) and (2)
IJSER © 2015 http://www.ijser.org
$\neg \mathrm{f}^{-1}(\mathrm{C})=\mathrm{f}^{-1}(\neg \mathrm{C})$

Since f is continuous and $\rightharpoondown \mathrm{C}$ is open, definition 4.15
$f^{-1}(\neg C)$ is open and hence $f^{-1}(C)$ is closed.

Now assume that inverse image of each CIFMS in ϕ is a CIFMS in г.

To prove f is continuous, it is enough to prove $f^{-1}(O)$ is open for every OIFMS O in ϕ.

O is an OIFMS $\Rightarrow \neg \mathrm{O}$ is a CIFMS.

$$
\Rightarrow \mathrm{f}^{-1}(\neg \mathrm{O}) \text { is a CIFMS. (By assumption) }
$$

Since (3) is true for any OIFMS, $\neg \mathrm{f}^{-1}(\mathrm{O})$ is a CIFMS and hence $\mathrm{f}^{-1}(\mathrm{O})$ is an OIFMS.

Thus f is continuous.

Hence the proof.
4.19 Theorem Let (X, r) and (Y, ϕ) be two IFMTs. Then the function $f: X \rightarrow Y$ is Continuous if and only if for each IFMT A in $\mathrm{X}, \mathrm{f}[\mathrm{cl}(\mathrm{A})] \subseteq \operatorname{cl}[\mathrm{f}(\mathrm{A})]$

Proof:

Assume f is continuous.

For any IFMT A in $X, f(A) \subseteq \operatorname{cl}(f(A))$ by proposition 4.14.2

$$
\Rightarrow A=f^{-1}(f(A)) \subseteq f^{-1}(\mathrm{cl}[f(\mathrm{~A})]) \text { by proposition 3.2.b }
$$

Since f is continuous and $\operatorname{cl}[f(A)]$ is closed, $f^{-1}(c l[f(A)])$ is closed.

$$
\Rightarrow \mathrm{cl}(\mathrm{~A}) \subseteq \mathrm{f}^{-1}(\mathrm{cl}[\mathrm{f}(\mathrm{~A})]) \text {, since } \mathrm{cl}(\mathrm{~A})
$$

is the smallest CIFMS contains A.

$$
\Rightarrow \mathrm{f}(\mathrm{cl}(\mathrm{~A})) \subseteq \mathrm{cl}[\mathrm{f}(\mathrm{~A})]
$$

Conversely assume the given condition.

To prove f is continuous, let C be a CIFMS in ϕ.

Then by assumption, $\mathrm{f}\left(\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{C})\right)\right) \subseteq \mathrm{cl}\left[\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{C})\right)\right]=\mathrm{cl}(\mathrm{C})=\mathrm{C}$, By proposition 4.15 .

Thus $\operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{C})\right) \subseteq \mathrm{f}^{-1}(\mathrm{C})$

But by proposition 4.14.2, $\mathrm{f}^{-1}(\mathrm{C}) \subseteq \mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{C})\right)$

$$
\begin{aligned}
& \Rightarrow \mathrm{f}^{-1}(\mathrm{C})=\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{C})\right) \\
& \Rightarrow \mathrm{f}^{-1}(\mathrm{C}) \text { is closed, By proposition 4.10. } \\
& \Rightarrow_{\mathrm{f}} \text { is continuous. }
\end{aligned}
$$

Hence the proof.
4.20 Theorem Let (X, r) and (Y, ϕ) be two IFMTs. Then the function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is Continuous if and only if for each IFMT B in $\mathrm{Y}, \mathrm{cl}\left[\mathrm{f}^{-1}(\mathrm{~B})\right] \subseteq \mathrm{f}^{-1}[\mathrm{cl}(\mathrm{B})]$

Proof:

Replace A by $\mathrm{f}^{-1}(\mathrm{~B})$ in theorem 4.19.
4.21 Theorem Let (X, r) and (Y, ϕ) be two IFMTs. Then the function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is Continuous if and only if for each IFMT $A \operatorname{in} X, \operatorname{int}[f(A)] \subseteq f[\operatorname{int}(A)]$.

Proof:

Assume that f is continuous.

For any IFMT A in $X, \operatorname{int}[f(A)] \subseteq f(A)$ by proposition 4.14.1

$$
\Rightarrow \mathrm{f}^{-1}[\operatorname{int}(\mathrm{f}(\mathrm{~A}))] \subseteq \mathrm{A} \text { by proposition 2.2.b }
$$

Since f is continuous and int $[f(A)]$ is open, $f^{-1}[\operatorname{int}(f(A))]$ is open. But int(A) is the largest OIFMS
contained in A.

$$
\begin{aligned}
& \Rightarrow \mathrm{f}^{-1}[\operatorname{int}(\mathrm{f}(\mathrm{~A}))] \subseteq \operatorname{int}(\mathrm{A}) \\
& \Rightarrow \operatorname{int}[\mathrm{f}(\mathrm{~A})] \subseteq \mathrm{f}[\operatorname{int}(\mathrm{~A})]
\end{aligned}
$$

Conversely assume the given condition.
To prove f is continuous, let O be an OIFMS in ϕ.
Then by assumption, $\operatorname{int}\left[f\left(\mathrm{f}^{-1}(\mathrm{O})\right)\right] \subseteq \mathrm{f}\left[\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{O})\right)\right]$

$$
\begin{aligned}
& \Rightarrow \operatorname{int}(\mathrm{O}) \subseteq \mathrm{f}\left[\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{O})\right)\right] \\
& \Rightarrow \mathrm{O} \subseteq \mathrm{f}\left[\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{O})\right)\right] \text { by }
\end{aligned}
$$

proposition 4.16

$$
\Rightarrow \mathrm{f}^{-1}(\mathrm{O}) \subseteq \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{O})\right)
$$

But by 4.14.1, $\quad \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{O})\right) \subseteq \mathrm{f}^{-1}(\mathrm{O})$
$\Rightarrow \mathrm{f}^{-1}(\mathrm{O})=\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{O})\right)$
$\Rightarrow f^{-1}(\mathrm{O})$ is an OIFMS, By proposition
4.11.

$$
\Rightarrow \mathrm{f} \text { is continuous. }
$$

Hence the proof.
4.22 Theorem Let (X, r) and (Y, ϕ) be two IFMTs. Then the function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is Continuous if and only if for each IFMT B in $Y, f^{-1}[\operatorname{int}(B)] \subseteq \operatorname{int}\left[\mathrm{f}^{-1}(\mathrm{~B})\right]$

Proof:

Replace A by $\mathrm{f}^{-1}(\mathrm{~B})$ in theorem 4.21 .

Subspace Topology

4.23 Definition Let (X, r) and (Y, ϕ) be two IFMTs. The topological space Y is called a subspace of the topological space X if $Y \subseteq X$ and if the open subsets of Y are precisely the subsets O^{\prime} of the form

$$
\mathrm{O}^{\prime}=\mathrm{O} \cap \mathrm{Y}
$$

for some open subsets O of X. Here we may say that each open subset O^{\prime} of Y is the restriction to Y of an open subset O of X. O^{\prime} is also called relative open in Y.
4.24 Example Let $X=\{1,2\}$ and define the IFMSs in X as follows.

For $\mathrm{n} \in \mathrm{N}^{+}, \mathrm{p} \in \mathrm{N}$
$\mathrm{G}_{\mathrm{n}}=\{<1: \quad(\mathrm{n} / \mathrm{n}+1, \quad \mathrm{n}+1 / \mathrm{n}+2, \ldots, \quad \mathrm{n}+\mathrm{p}-1 / \mathrm{n}+\mathrm{p}), \quad(1 / \mathrm{n}+2$, $1 / n+3, \ldots, 1 / n+p+1)>$,
$<2: \quad(\mathrm{n}+1 / \mathrm{n}+2, \quad \mathrm{n}+2 / \mathrm{n}+3, \ldots, \mathrm{n}+\mathrm{p}+1 / \mathrm{n}+\mathrm{p}+1), \quad(1 / \mathrm{n}+3$, $1 / n+4, \ldots, 1 / n+p+2)>\}$

Let $\mathrm{r}^{\prime}=\{\neg 0, \neg 1\} \mathrm{U}\left\{\mathrm{G}_{\mathrm{n}}\right\}$
Then $\left(X, r^{\prime}\right)$ is a subspace of (X, r) example 4.4.
4.25 Theorem Let (X, r) be an IFMT and let Y be a subset of X. Define the collection ϕ of subsets of Y as the collection of subsets O^{\prime} of Y of the form

$$
\mathrm{O}^{\prime}=\mathrm{O} \cap \mathrm{Y}
$$

where O is an OIFMS in (X, r). Then $(Y \mathrm{U} \neg 1, \phi)$ is an IFMT and a subspace of (X, r)

Proof:

We have $\neg 0=\neg 0 \cap \mathrm{Y}$.

Suppose $\mathrm{O}^{\prime}{ }_{1}, \mathrm{O}_{2}^{\prime}, \ldots . ., \mathrm{O}_{\mathrm{n}}^{\prime} \in \Phi$
Then $\mathrm{O}_{\mathrm{i}}^{\prime}=\mathrm{O}_{\mathrm{i}} \cap \mathrm{Y}$ for some $\mathrm{O}_{\mathrm{i}} \in \mathrm{I}$
Then $\mathrm{O}_{1}^{\prime} \cap \mathrm{O}_{2}^{\prime} \cap \ldots \ldots \cap \mathrm{O}_{\mathrm{n}}^{\prime}=\left(\mathrm{O}_{1} \cap \mathrm{O}_{2} \cap \ldots \ldots \cap \mathrm{O}_{\mathrm{n}}\right) \cap \mathrm{Y} \in \phi$
Since $\left(\mathrm{O}_{1} \cap \mathrm{O}_{2} \cap \ldots \ldots \mathrm{O}_{\mathrm{n}}\right) \in \mathrm{r}$
Finally, suppose that for each $\alpha \in \mathrm{I}, \mathrm{O}^{\prime} \alpha \in \Phi$.
Thus for each $\alpha \in \mathrm{I}, \mathrm{O}^{\prime} \alpha=\mathrm{O} \alpha \cap \mathrm{Y}$ for some $\mathrm{O} \alpha \in \mathrm{r}$.
Then $\mathrm{UO}^{\prime} \alpha=\mathrm{U}(\mathrm{O} \alpha \cap \mathrm{Y})=\mathrm{UO} \alpha \cap \mathrm{Y} \in \Phi$ since $\mathrm{UO} \alpha \in \mathrm{r}$
Hence $(\mathrm{Y} \mathrm{U} \neg 1, \phi)$ is an IFMT and therefore a subspace of (X, r).
4.26 Theorem Let (Y, ϕ) be a subspace of the IFMT (X, r). A subset C^{\prime} of Y is relatively closed in Y if and only if

$$
C^{\prime}=C \cap Y
$$

for some CIFMS C of X.

Proof:

First assume that C^{\prime} is relatively closed. Then $\rightarrow \gamma\left(C^{\prime}\right)$ is relatively open, where $\neg \mathrm{y}$ denotes the complement w.r.t Y.

Thus $\neg \mathrm{r}\left(\mathrm{C}^{\prime}\right)=\mathrm{O} \cap \mathrm{Y}$ for some OIFMS O in X .

$$
\Rightarrow \mathrm{C}^{\prime}=\neg \mathrm{y}(\mathrm{O} \cap \mathrm{Y})=\neg x(\mathrm{O}) \cap \mathrm{Y}
$$

where $\neg x(\mathrm{O})$ is a CIFMS in X.
Conversely suppose that $\mathrm{C}^{\prime}=\mathrm{C} \cap \mathrm{Y}$ for some CIFMS C of X .
Then $\neg Y\left(C^{\prime}\right)=\neg x(C) \cap Y$.
Hence $\neg \mathrm{Y}\left(\mathrm{C}^{\prime}\right)$ is relatively open in Y and therefore C^{\prime} is relatively closed in Y.
4.26 Definition [8] Let A be a subset of the universal set X. The function i: A $\rightarrow X$, which is defined by the
correspondence $\mathrm{i}(\mathrm{x})=\mathrm{x}$ for each $\mathrm{x} \in \mathrm{A}$ is called an inclusion mapping or function.
4.27 Theorem Let (Y, ϕ) be a subspace of the IFMT (X, r).

Then the inclusion mapping $\quad i: Y \rightarrow X$ is continuous.

Proof:

For each IFMS A of $\mathrm{X}, \mathrm{i}^{-1}(\mathrm{~A})=\mathrm{A} \cap \mathrm{Y}$.

Thus if O is an OIFMS in X , then $\mathrm{i}^{-1}(\mathrm{O})=\mathrm{O} \cap \mathrm{Y}$ is a relatively open subset of Y.

Hence i is continuous.

V. CONCLUSION

In this work we studied the topological structures of Intuitionistic Fuzzy Multisets. We introduced the concept of Intuitionistic Fuzzy Multiset Topology. We defined the concept of functions between Intuitionistic Fuzzy Multisets. Open and closed sets are defined. The Closure, Interior, Subspace topology and Continuous functions are defined and their various properties are discussed. The foundations which we made through this paper can be extended and studied to get an insight into the topological structures Intuitionistic Fuzzy Multisets.
[7] G F Simmons, "Introduction to Topology and Modern Analysis", McGraw-Hill International Student Edition.
[8] Bert Mendelson, "Introduction to Topology", $3^{\text {rd }}$ Edition
[9] C. Chang, "Fuzzy Topological spaces", J. Math. Anal. Appl. 24 (1968), 142-145.
[10] K.T.Atanassov, "Intuitionistic Fuzzy sets", VII ITKRs Session, Sofia (deposed in Central Science-Technical Library of Bulgarian Academy of Science, 1697/84) (in Bulgarian) (1983)
[11] W.D.Blizard, "Dedekind multisets and function shells", Theoretical Computer Science, 110, (1993) 79-98.
[12] W.D.Blizard, "Multiset Theory", Notre Dame Journal of Formal Logic, Vol.30, No.1, (1989) 36-66.
[13] Shinoj.T.K, Sunil Jacob John, "Intuitionistic Fuzzy Multiset and its application in Medical Diagnosis", International Journal of Mathematical and Computational Sciences, World Academy of Science, Engineering and Technology(WASET), Volume 6 (2012) 34-38
[14] Shinoj.T.K, Sunil Jacob John, "Accuracy in Collaborative Robotics: An Intuitionistic FuzzyMultiset Approach", Global Journal of Science Frontier Research (GJSFR), Volume 13 (2013) Issue 10.

REFERENCES

[1] L.A. Zadeh, "Fuzzy sets", Inform. and Control 8 (1965) 338-353.
[2] R.R Yager, "On the theory of bags", Int.J. of General Systems 13 (1986) 23-37.
[3] K.T.Atanassov, "Intuitionistic Fuzzy sets", Fuzzy sets and Systems 20 (1986) 87-96.
[4] Shinoj.T.K, Sunil Jacob John, "Intutionistic fuzzy multisets", International Journal of Engineering Science and Innovative Technology, Volume 2, Issue 6, November 2013.
[5] Shinoj T K, Anagha Baby, Sunil Jacob John, "On Some Algebraic Structures of Fuzzy Multisets", Annals of Fuzzy Mathematics and Informatics, Volume 9, No 1, January 2015, 77-90.
[6] Dogan Coker, "An Introduction to intuitionistic fuzzy topological spaces", Fuzzy sets and systems, 88 (1997), 81-89.

